Grupos de investigación

Grupo: Estrés AbiótiKo-Transporte de potasio en estrés abiótico en plantas y levaduras

AbiotiK+ Stress-Potassium transport in abiotic stress in plants and yeast

GENERAL DESCRIPTION OF SCIENTIFIC INTERESTS:
Ion homeostasis is a dynamic process and a fundamental requirement for all organisms. Many different minerals are required for essential biochemical processes, but accumulation of these elements is toxic. Thus, all living organisms have developed efficient systems to acquire and store these elements and robust mechanisms to maintain homeostatic concentrations to avoid toxicity and to respond to environmental changes. Potassium is a key monovalent cation necessary for multiple aspects of cell growth and survival, for example compensation of negative charges of macromolecules, maintenance of electroneutrality, cell turgor and volume, enzyme activity, protein synthesis, and maintenance of proper membrane potential and intracellular pH. The long term, general goal of our research group is to generate new knowledge regarding the regulation of potassium transporters from both plants and yeast which may be applied in future in biotechnological approaches to improve plant drought tolerance and industrial performance of yeast.

CURRENT PROJECTS:
In plants, apart from the basic, general physiological functions listed above for potassium at the cellular level, this cation also plays a key role at the whole plant level, as it is involved in important processes such as stomatal aperture that controls transpirational water loss and plant desiccation. Inward rectifying channels (Kin) are responsible for potassium influx into guard cells and play a key role in stomatal opening. KAT1, and its close homologue KAT2, are the main inward rectifying channels expressed in guard cells. Our current project is focused on the characterization 14 proteins that we have identified in a Split-Ubiquitin protein-protein interaction screen searching for KAT1 potassium channel interactors from the model plant Arabidopsis thaliana. We are taking several biochemical and genetic approaches to confirm these interactors and their effect on KAT1 activity in plants. The identification of physiologically relevant regulators of K+ channels will aid in the design of approaches that may impact both drought tolerance and pathogen susceptibility, since these pores are responsible for CO2 uptake and transpirational water loss and are the point of entry for certain pathogens.
In addition we are interested in studying the regulation of the high affinity potassium transporter of yeast, Trk1. The regulation of this transporter is crucial for the regulation of nutrient uptake and, recently, a direct effect of both external and internal potassium and pH on ethanol tolerance in conditions relevant for the industrial production of bioethanol has been reported. In addition, several studies clearly indicate that the proteins involved in determining and maintaining plasma membrane potential through the modulation of potassium homeostasis represent promising targets for complimentary antifungal treatments. Therefore, the identification of proteins that regulate the activity of this potassium transporter has potential applications in both agronomic, industrial and medical contexts.

Investigadores

Personal Contratado y Becarios

  • Bissoli G, Niñoles R, Fresquet S, Palombieri S, Bueso E, Rubio L, García-Sánchez MJ, Fernández JA, Mulet JM, Serrano R (2012)
    Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopsis

    Plant Journal 70: 704-716

  • Kahm M, Navarrete C, Llopis-Torregrosa V, Herrera R, Barreto L, Yenush L, Ariño J, Ramos J, Kschischo M (2012)
    Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling

    PLoS Computational Biology 8: e1002548

  • Barreto L, Canadell D, Petrezselyova S, Navarrete C, Maresova L, Perez-Valle J, Herrera R, Olier I, Giraldo J, Sychrova H, Yenush L, Ramos J, Arino J (2011)
    A genomewide screen for tolerance to cationic drugs reveals genes important for potassium homeostasis in Saccharomyces cerevisiae

    Eukaryotic Cell 10: 1241-1250

  • Merchan S, Pedelini L, Hueso G, Calzada A, Serrano R, Yenush L (2011)
    Genetic alterations leading to increases in internal potassium concentrations are detrimental for DNA integrity in Saccharomyces cerevisiae

    Genes to Cells 16: 152-65

  • Mulet JM (2011)
    Letter to the editor regarding the article by Paganelli et al.

    Chemical Research in Toxicology 24: 609

  • Casado C, Yenush L, Melero C, Ruiz Mdel C, Serrano R, Pérez-Valle J, Ariño J, Ramos J (2010)
    Regulation of Trk-dependent potassium transport by the calcineurin pathway involves the Hal5 kinase

    FEBS Letters 584: 2415-2420

  • Pérez-Valle J, Rothe J, Primo C, Martínez Pastor M, Ariño J, Pascual-Ahuir A, Mulet JM, Serrano R, Yenush L (2010)
    The Hal4 and Hal5 protein kinases are required for the general control of carbon and nitrogen uptake and metabolism

    Eukaryotic Cell 9: 1881-1890

  • Hoeberichts FA, Perez-Valle J, Montesinos C, Mulet JM, Planes MD, Hueso G, Yenush L, Sharma SC, Serrano R (2010)
    The role of K+ and H+ transport systems during glucose- and H2O2-induced cell death in Saccharomyces cerevisiae

    Yeast 27: 713-725

  • Muñoz-Bertomeu J, Cascales-Miñana B, Mulet JM, Baroja-Fernández E, Pozueta-Romero J, Kuhn JM, Segura J, Ros R (2009)
    Plastidial Glyceraldehyde-3-Phosphate Dehydrogenase Deficiency Leads to Altered Root Development and Affects the Sugar and Amino Acid Balance in Arabidopsis

    Plant Physiology 151: 541-558

  • Gimeno J, Gadea J, Forment J, Pérez-Valle J, Santiago J, Martínez-Godoy MA, Yenush L, Bellés JM, Brumós J, Colmenero-Flores JM, Talón M, Serrano R (2009)
    Shared and novel molecular responses of mandarin to drought

    Plant Molecular Biology 70: 403- 420

Entidad financiadora: 
Universitat Politècnica de València
IP: 
Carmina Gisbert
Entidad financiadora: 
Universitat Politècnica de València
IP: 
José Miguel Mulet
Entidad financiadora: 
Ministerio de Economía y Competitividad/FEDER
IP: 
Lynne Yenush
Entidad financiadora: 
MICINN/FEDER
IP: 
Lynne Yenush
Entidad financiadora: 
MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD/FEDER
IP: 
Lynne Yenush y JM Mulet
Título: 
METHOD TO INCREASE STRESS TOLERANCE IN PLANTS
Fecha de solicitud: 
Jueves, 21 Octubre, 2004
Referencia ID: 
A method is presented for selecting and isolating nucleic acids capable of conferring tolerance or resistance to environmental stress conditions in plants or yeast. Furthermore, nucleic acids, the proteins they encode and their use for the production of plants or yeast with enhanced environmental stress resistance is disclosed.
Autores: 
Serrano Salom, Ramón Mulet Salort, José Miguel
Título: 
PLANT HAEMOGLOBIN
Fecha de solicitud: 
Jueves, 14 Octubre, 2004
Referencia ID: 
The invention relates generally to a method for improving growth of plants, under normal and under stress conditions, more particularly under osmotic stress and/or temperature extremes, comprising modifying plant haemoglobin gene expression and/or by modifying plant haemoglobin protein levels in a plant. The invention furthermore relates to a method for increasing yield of a plant, comprising modifying plant gene expression and/or by modifying plant haemoglobin levels in a plant. The invention also relates to a nucleic acid encoding a haemoglobin conferring this altered growth and stress tolerance.
Autores: 
Mulet Salort, Jose Miguel Sanz Molinero, Ana Isabel Serrano Salom, Ramon
Título: 
(ARKL-CRIO5) Plants having enhanced yield-related traits and a method for making the same.
Fecha de solicitud: 
Lunes, 15 Septiembre, 2008
Autores: 
Valerie Frankard Cristophe Reuzeau Ana I. Sanz Molinero Ramon Serrano JM Mulet Salort
Título: 
(Patellin-CRIO4) Plants having enhanced yield-related traits and a method for making the same
Fecha de solicitud: 
Viernes, 28 Noviembre, 2008
Autores: 
Ana I. Sanz Molinero Cristophe Reuzeau Valerie Frankard Ramón Serrano Salom JM Mulet Salort
Yeast ion homeostasis